

LS7266R1 has a set of registers associated with each X and Y axis. All X-axis registers have the name prefix X, whereas all Y-axis registers have the prefix Y. Selection of a specific register for Read/Write is made from the decode of the three most significant bits (D7-D5) of the data-bus. CS input enables the IC for Read/Write. C/D input selects between control and data information for Read/Write. Following is a complete list of LS7266R1 registers.

Preset Registers: XPR and YPR

Each of these PRs are 24-bit wide. 24-bit data can be written into a PR, one byte at a time, in a sequence of three data write cycles.

 PR

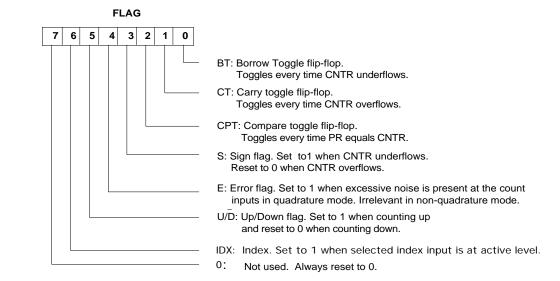
 7
 0
 7
 0
 7
 0

 HI BYTE (PR2)
 MID BYTE (PR1)
 LO BYTE (PR0)

Counters: XCNTR and YCNTR

Each of these CNTRs are 24-bit synchronous Up/Down counters. The count clocks for each CNTR is derived from its associated A/B inputs. Each CNTR can be loaded with the content of its associated PR.

Output Latches: XOL and YOL

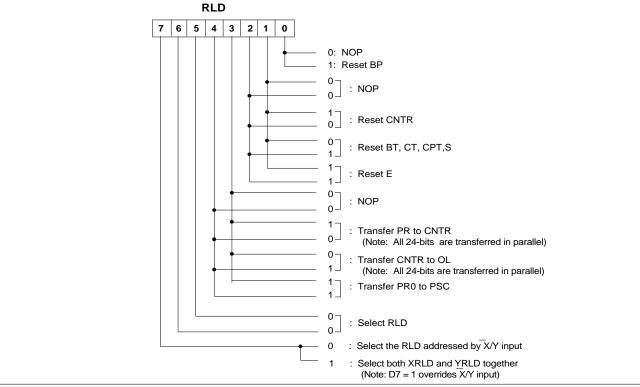

Each OL is 24-bits wide. In effect, the OLs are the output ports for the CNTRs. Data from each CNTR can be loaded into its associated OL and then read back on the data-bus, one byte at a time, in a sequence of three data Read cycles.

Byte Pointers: XBP and YBP

The Read and Write operations on an OL or a PR always accesses one byte at a time. The byte that is accessed is addressed by one of the BPs. At the end of every data Read or Write cycle on an OL or a PR, the associated BP is automatically incremented to address the next byte.

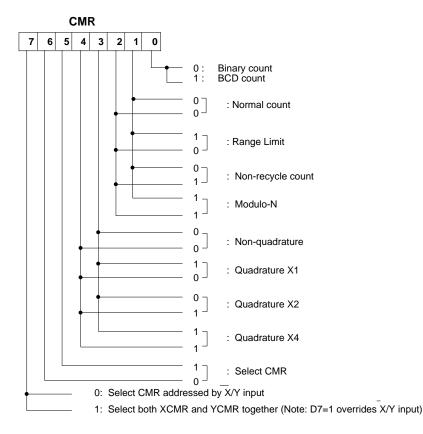
Flag Register: XFLAG and YFLAG

The FLAG registers hold the status information of the CNTRs and can be read out on the data bus. The E bit of a FLAG register is set to 1 when the noise pulses at the quadrature inputs are wide enough to be validated by the input filter circuits. E = 1 indicates excessive noise at the inputs but not a definite count error. Once set, E can only be reset via the RLD.


Filter Clock Prescalers: XPSC and YPSC

Each PSC is an 8-bit programmable modulo-N down counter, driven by the FCK clock. The factor N is down loaded into a PSC from the associated PR low byte register PR0. The PSCs provide the ability to generate independent filter clock frequencies for each channel. The PSCs generate the internal filter clock, FCKn used to validate inputs XA, XB, YA, YB in the quadrature mode.

Final filter clock frequency $f_{FCKn} = (f_{FCK}/(n+1))$, where n = PSC = 0 to FFH. For proper counting in the quadrature mode, $f_{FCKn} = 8f_{QA}$ (or $8f_{QB}$), where f_{QA} and f_{QB} are the clock frequencies at inputs A and B. In non-quadrature mode filter clock is not needed and the FCK input (Pin 2), should be tied to VDD.

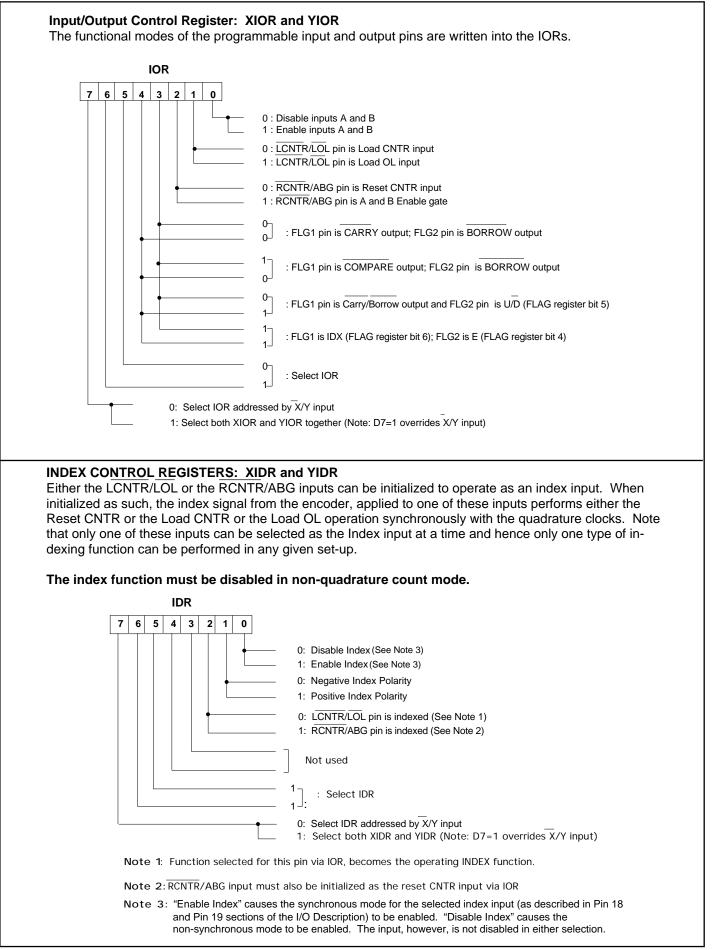

Reset and Load Signal Decoders: XRLD and YRLD

Following functions can be performed by writing a control byte into an RLD: Transfer PR to CNTR, Transfer CNTR to OL, reset CNTR, reset FLAG and reset BP.

Counter Mode Registers: XCMR and YCMR

The CNTR operational mode is programmed by writing into the CMRs.

DEFINITIONS OF COUNT MODES:

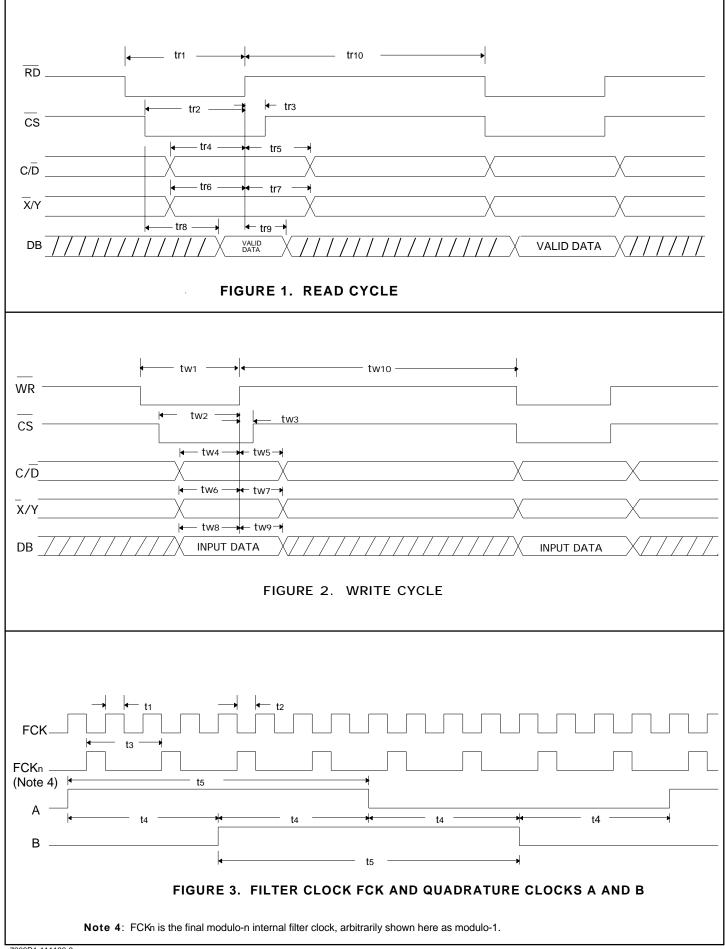

Range Limit. In range limit count mode, an upper and a lower limit is set, mimicking limit switches in the mechanical counterpart. The upper limit is set by the content of the PR and the lower limit is set to be 0. The CNTR freezes at CNTR=PR when counting up and at CNTR=0 when counting down. At either of these limits, the counting is resumed only when the count direction is reversed.

Non-Recycle. In non-recycle count mode, the CNTR is disabled, whenever a count overflow or underflow takes place. The end of cycle is marked by the generation of a Carry (in Up Count) or a Borrow (in Down Count). The CNTR is re-enabled when a reset or load operation is performed on the CNTR.

Modulo-N. In modulo-N count mode, a count boundary is set between 0 and the content of PR. When counting up, at CNTR=PR, the CNTR is reset to 0 and the up count is continued from that point. When counting down, at CNTR=0, the CNTR is loaded with the content of PR and down count is continued from that point.

The modulo-N is true bidirectional in that the divide-by-N output frequency is generated in both up and down direction of counting for same N and does not require the complement of N in the UP instance. In frequency divider application, the modulo-N output frequency can be obtained at either the Compare (FLG1) or the Borrow (FLG2) output. Modulo-N output frequency, $f_N = (f_i / (N+1))$ where $f_i =$ Input count frequency and N=PR.

> The information included herein is believed to be accurate and reliable. However, LSI Computer Systems, Inc. assumes no responsibilities for inaccuracies, nor for any infringements of patent rights of others which may result from its use.

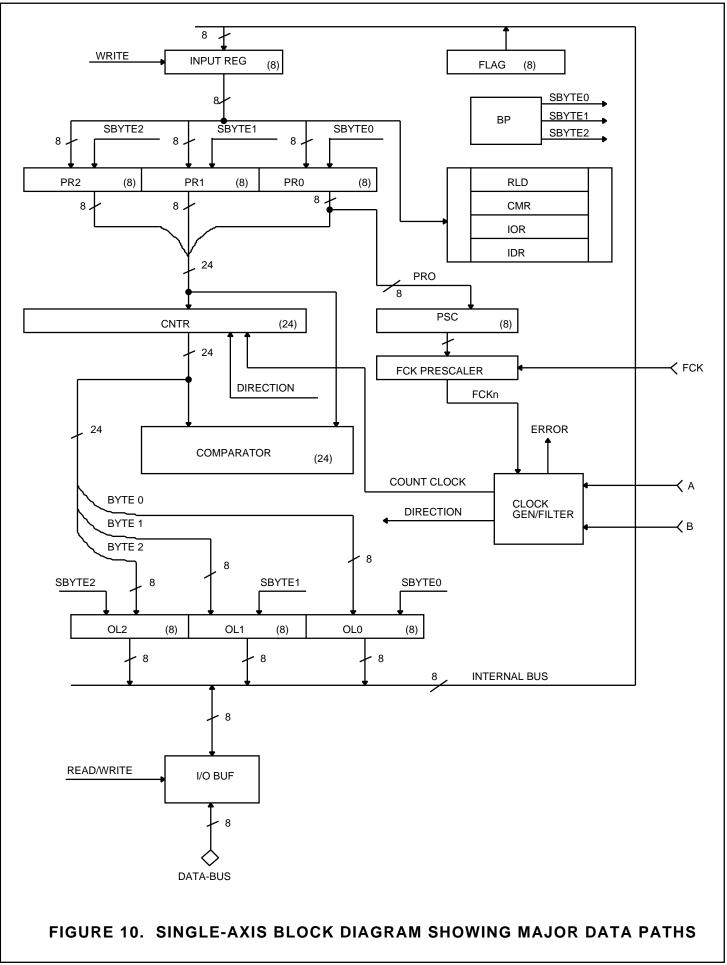

REGISTER ADDRESSING MODES											
	D7	D6	D5	C/D	RD	WR	X/Y	CS		FUNCTIO	N
	х	х	х	Х	Х	Х	Х	1	Disable both axes for	or Read/Write	
	X	Х	х	0	1		0	0	Write to XPR byte se	egment addre	essed by XBP (Note 3)
	х	х	х	0	1		1	0	Write to YPR byte se	egment addre	essed by YBP (Note 3)
	0	0	0	1	1		0	0	Write to XRLD		
	0	0	0	1	1		1	0	Write to YRLD		
	1	0	0	1	1		х	0	Write to both XRLD	and YRLD	
	0	0	1	1	1		0	0	Write to XCMR		
	0	0	1	1	1 -		1	0	Write to YCMR		
	1	0	1	1	1 -		х	0	Write to both XCMR	and YCMR	
	0	1	0	1	1 -		0	0	Write to XIOR		
	0	1	0	1	1		1	0	Write to YIOR		
	1	1	0	1	1 -		х	0	Write to both XIOR a	Ind YIOR	
	0	1	1	1	1		0	0	Write to XIDR		
	0	1	1	1	1 -		1	0	Write to YIDR		
	1	1	1	1	1 -		X	0	Write to both XIDR a	nd YIDR	
	х	х	x	0	0	1	0	0	Read XOL byte seg	mont addross	ad by YRP (Nota 3)
	x										
		Х	Х	0	0	1	1	0	Read YOL byte seg	ment address	ed by TEP (Note 3)
	Х	Х	Х	1	0	1	0	0	Read XFLAG		
	Х	Х	Х	1	0	1	1	0	Read YFLAG		
	X =	Don'	t Care	•							
	No	ote 3:	Releva	nt BP is	autom	atically	/ incremer	nted a	t the trailing edge of F	RD or WR puls	Se
Absolut	ho Mar	vimun	n Rati	inas.							
	amete		ii itat		mbol				Values		Unit
Voltage at any input				VIN				Vss3 to VDI	D + .3	V	
Supply Voltage			Vdd				+7.0		V		
Operating Temperature			ТА				-25 to +80		oC		
Storage Temperature				TSTG				-65 to +150		oC	
DC Elec	trical	Chara	acteri	stics.	(TA =	-25°(C to +80	°C, ∖	′DD = 4.5V to 5.5V	()	
Parameter			-			Min. Va 4.5		Max.Value	Unit	Remarks	
Supply Voltage			VDD)	5.5	V	- All clocks off		
Supply Current Input Logic Low				Idd Vil				800 0.8	μA V	All clocks off	
Input Logic Low)	-	V	-	
	Input Logic High Output Low Voltage				VOL				0.5	v	IOSNK=5mA
Output H			•		Voh		Vd	D5	-	V	IOSRC=1mA
Input Lea					lilk		-	-	30	nA	-
Data Bus				nt	Idlk		-		60	nA	Data bus off
Output Source Current				IOSRC	1.0)	-	mA	VO = VDD5V	
Output Sink Current				IOSNK	DSNK 5.0			-	mA	Vo = 0.5V	

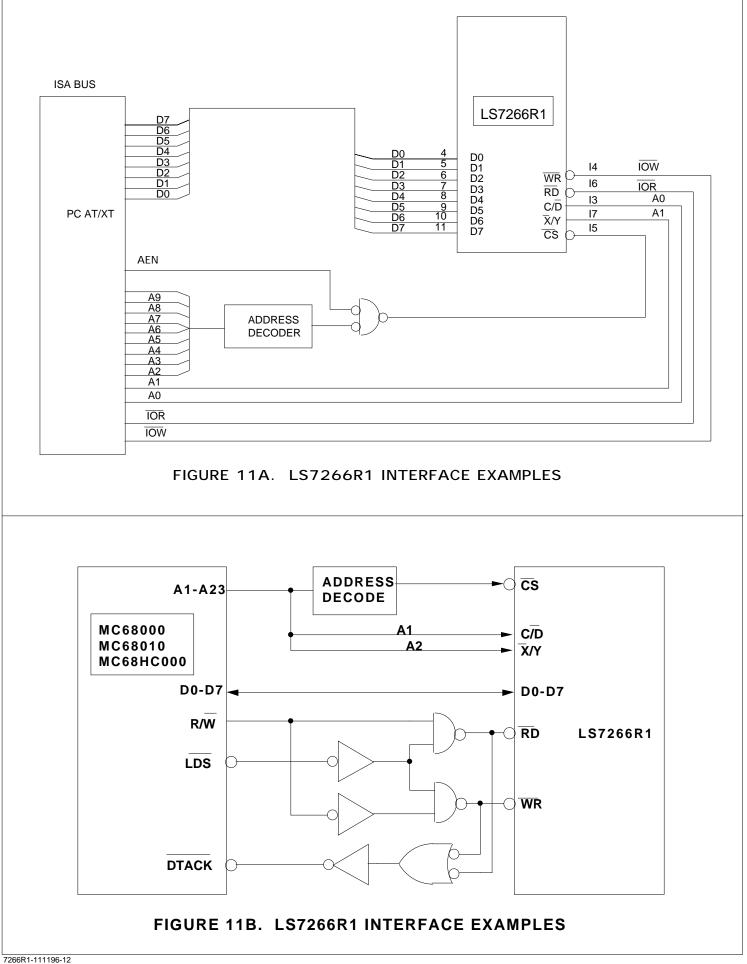
Transient Characteristics. (T	A = -25°C to	+80°C, VDD =	4.5V to 5.5V)		
	ymbol	Min. Value	Max.Value	Unit	Remarks
Read Cycle (See Fig. 1)	ymbol		wax. value	Onit	Remarks
RD Pulse Width	tr1	50	_	ne	
CS Set-up Time	tr2	50 50	-	ns	-
CS Hold Time		0	-	ns	-
	tr3		-	ns	-
C/D Set-up Time	tr4	50	-	ns	-
C/D Hold Time	tr5	10	-	ns	-
X/Y Set-up Time	tr6	50	-	ns	-
X/Y Hold Time	tr7	10	-	ns	-
Data Bus Access Time	tr8	50	-	ns	Access starts when both RD and CS are low.
Data Bus Release Time	tr9	-	25	ns	Release starts when either \overline{RD} or \overline{CS} is terminated.
Back to Back Read delay	t r10	60	-	ns	-
Write Cycle (See Fig. 2)					
WR Pulse Width	tw1	30	-	ns	-
CS Set-up Time	tw2	30	_	ns	_
CS Hold Time	twз	0	_	ns	<u>-</u>
C/D Set-up Time	twa	30	_	ns	_
C/D Hold Time	tw5	10	_		
-		-	-	ns	-
X/Y Set-up Time	tw6	30	-	ns	-
X/Y Hold Time	tw7	10	-	ns	-
Data Bus Set-up Time	twa	30	-	ns	-
Data Bus Hold Time	tw9	10	-	ns	-
Back to Back Write Delay	t W10	60	-	ns	-
Quadrature Mode (See Fig. 3-	.5)				
FCK High Pulse Width	t1	14	_	ns	_
FCK Low Pulse Width	t2	14	-	ns	-
		14	- 35	MHz	-
FCK Frequency	ffck d to	-			-
Mod-n Filter Clock(FCKn)Perio		28	-	ns	tз = (n+1) (t1+t2), where n = PSC= 0 to FFн
FCKn frequency	f FCKn	-	35	MHz	-
Quadrature Separation	t4	57	-	ns	t4 2t3
Quadrature Clock Pulse Width	t5	115	-	ns	t5 4t3
Quadrature Clock frequency	fqa, fqb	-	4.3	MHz	$f_{QA} = f_{QB} = 1/8t_3$
Quadrature Clock to Count Del	ay to1	5t 3	6t 3	-	-
X1/X2/X4 Count Clock Pulse W	/idth tq2	28	-	ns	tq2 = t3
Index Input Pulse Width	tidx	85	-	ns	tidx 3t3
Index Skew from A	tAi	-	28	ns	tAi t3
Carry/Borrow/Compare Output Wid		28	-	ns	tq3 = t3
Non-Quadrature Mode (See F	ig. 6-7)				
Clock A - High Pulse Width	t6	16	-	ns	-
Clock A - Low Pulse Width	t7	16	-	ns	-
Direction Input B Set-up Time	tas	20	-	ns	-
Direction Input B Hold Time	tвн	20	-	ns	-
Gate Input (ABG) Set-up Time	tgs	20	-	ns	-
Gate Input (ABG) Hold Time	tgн	20	-	ns	-
Clock Frequency (non-Mod-N)	fA	-	30	MHz	fA = (1/(t6 + t7))
Clock Frequency (Mod-N)	fan	-	25	MHz	-
Clock to Carry or Borrow Out Dela	v t9	_	30	ns	-
Carry or Borrow Out Pulse Wid		16	-	ns	t10 = t7
Load CNTR, Reset CNTR and		10		115	
Load OL Pulse Width	+	20		20	
	t11	20 50	-	ns	-
Clock to Compare Out Delay	t12	50	-	ns	-

INPUTS/OUTPUTS

X-AXIS I/Os:	
XA (Pin 20) XB (Pin 21)	X-axis count input A X-axis count input B Either quadrature encoded clocks or non-quadrature clocks can be applied to XA and XB. In quadrature mode XA and XB are digitally filtered and decoded for UP/DN clock. In non-quadrature mode, the filter and the decoder circuits are by-passed. Also, in non-quadrature mode XA serves as the count input and XB as the UP/DOWN direction control input, with XB = 1 selecting Up Count mode and XB = 0, selecting Down Count mode.
XLCNTR/XLOL (Pin 19)	X-axis programmable input, to operate as either direct load XCNTR or direct load XOL or synchronous load XCNTR or synchronous load XOL. The synchronous load mode is intended for interfacing with the encoder Index output in quadrature clock mode. In direct load mode, a logic low level is the active level at this input. In synchronous load mode the active level can be programmed to be either logic low or logic high. Both quarter-cycle and half-cycle Index signals are supported by this input in the indexed Load mode. The synchronous function must be disabled in non-quadrature count mode (See description of IDR on P. 4)
XRCNTR/XABG (Pin 18)	X-axis programmable input to operate either as direct reset XCNTR or count enable/disable gate or synchronous reset XCNTR. The synchronous reset XCNTR mode is intended for interfacing with the encoder Index output in quadrature clock mode. In direct reset XCNTR mode, a logic low level is the active level at this input whereas in synchronous reset XCNTR mode the active level can be programmed to be either a logic low or a logic high. Both quarter-cycle and half-cycle index signals are supported by this input in the indexed reset CNTR mode. The synchronous function must be disabled in non-quadrature count mode (See description of IDR on P. 4). In count enable/disable mode, a logic high at this input enables the counter and a logic low level disables the counter.
XFLG1 (Pin 22)	X-axis programmable output to operate either as XCARRY (Active low), or XCOMPARE (generated when XPR=XCNTR; Active low), or XIDX (XFLAG bit 6) or XCARRY/XBORROW (Active low).
XFLG2 (Pin 23)	X-axis programmable output to operate as either XBORROW (Active low) or XU/ $ar{D}$ (XFLAG bit 5) or XE (XFLAG bit 4).
Y-AXIS I/Os: All the X-axis inputs YA (Pin 25) YB (Pin 24) YLCNTR/YLOL (I YRCNTR/YABG (YFLG1 (Pin 27) YFLG2 (Pin 26)	
COMMON I/Os: WR (Pin 14)	Write input. Control/data bytes are written at the trailing edge of low level pulse applied to this input.
RD (Pin 16)	Read input. A low level applied to this input enables the FLAGs and OLs to be read on the data bus.
CS (Pin 15)	Chip select input. A low level applied to this input enables the chip for Read and Write.
C/D (Pin 13)	Control/Data input. This input selects between a control register or a data register for Read/Write. When low, a data register is selected. When high, a control register is selected.
D0-D7 (Pins 4-11)	Data Bus input/output. The 8-bit three-state data bus is the I/O port through which all data transfers take place between the LS7266R1 and the host processor.
FCK (Pin 2)	Filter clock input in quadrature mode. The FCK is divided down internally by two 8-bit programmable prescalers, one for each channel.
𝟹/Ƴ (Pin 17)	Selects between X and Y axes for Read or Write. $\overline{X}/Y = 0$ selects X-axis and $\overline{X}/Y = 1$ selects Y-axis. \overline{X}/Y is overridden by D7 =1 in Control Write Mode (C/ \overline{D} = 1).
VDD (Pin 3)	+5VDC
Vss (Pin 12)	GND

7266R1-011498-7




7266R1-111196-8

	← UP DOWN→
A	
В	
INDEXI (Note 5)	
X1 CLOCK (Note 6)	
X2 CLOCK (Note 6)	$ \longrightarrow \longleftarrow t_{02} $
X4 CLOCK (Note 6)	
IDX (Note 7)	
	FIGURE 4. QUADRATURE CLOCK A, B AND INDEX INPUT
Note	5: Shown here is positive index with solid line depicting 1/4 cycle index and dotted line depicting 1/2 cycle index. Either LCNTR/LOL or RCNTR/ABG input can be used as the INDEX input.
Note	6: X1, X2 and X4 clocks are the final internal Up/Down count clocks derived from filtered and decoded Quadrature Clock inputs, A and B.
Note	7: IDX is the synchronized internal "load OL" or "load CNTR" or "reset CNTR" signal based on LCNTR/LOL or RCNTR/ABG input being selected as the INDEX input, respectively. This signal is identical with FLAG register bit 6.
4	UP DOWN
Α	
В	
X4 CLOCK (Internal)	
CNTR	
<u>cy</u>	t _{Q3}
BW	
COMPARE (Note 8)	
CT(FLAG-B1)	
BT(FLAG-B0)	
CPT(FLAG-B2)	
FIGURE 5	5. CARRY, BORROW, COMPARE, CARRY TOGGLE, BORROW TOGGLE AND COMPARE TOGGLE IN X4 QUADRATURE, NORMAL, BINARY COUNT MODE.
N	ote 8 : COMPARE is generated when PR = CNTR. In this timing diagram it is arbitrarily assumed that PR = 1.

.

← DOWN→ ↓ UP DOWN → ↓								
DIRECTION (B)								
COUNT IN (A) \rightarrow \leftarrow t _{GH}								
GATE (ABG)								
COUNT DISABLE COUNT DISABLE COUNT ENABLE COUNT ENABLE								
$\overrightarrow{CY} \longrightarrow CNTR DISABLED ty \longrightarrow \leftarrow t10$								
BW CNTR DISABLED CNTR DISABLED								
CNTR 9999998 0 1 2 1 0 999999 0 N N-1 N-2 CNTR ENABLED								
RCNTR CNTR ENABLED CNTR ENABLED CNTR ENABLED								
FIGURE 7. NON-RECYCLE, NON-QUADRATURE, BCD MODE								
$A _ \ \square \$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
BW FIGURE 8. MODULO - N, NON-QUADRATURE (Shown with N = 3)								
B C UP DOWN UP								
$CNTR O \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ (CNTR FROZEN) \\ \hline 3 \\ \hline 2 \\ \hline 1 \\ \hline 0 \\ (CNTR FROZEN) \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 2$								
COMP								
BW								
FIGURE 9. RANGE LIMIT, NON-QUADRATURE(Shown with PR = 4)								

C Sample Routines for Interfacing with LS7266R1

//CMR Reg. #include<stdlib.h> #define LCNTR 0x00 #include <stdio.h> #define $\breve{C}MR(arg)(arg | 0xA0)$ #define LOL 0x02 #define XCMR(arg) (arg | 0x20) #include <conio.h> #define RCNTR 0x00 #define YCMR(arg) XCMR(arg) #define ABGate 0x04 #define BINCnt #define CYBW #define XDATA(arg) (arg +0) 0x00 0x00 #define BCDCnt #define XCMD (arg) (arg + 1)0x01 #define CPBW 0x08 #define YDATA (arg) (arg +2) #define NrmCnt 0x00 #define CB_UPDN 0x10 #define IDX ERR #define YCMD (arg) (arg +3) #define RngLmt 0x02 0x18 #define NRcyc 0x04 // RLD Reg. #define ModN 0x06 // IDR #define \breve{RLD} (arg) (arg | 0x80) #define NQDX #define IDR(arg) (arg | 0xE0) 0x00 #define XRLD (arg) (arg | 0) #define QDX1 #define XIDR(arg) (arg | 0x60)0x08 #define YRLD (arg) XRLD(arg) #define ODX2 0x10 #define YIDR(arg) XIDR(arg) #define Rst BP 0x01 #define ODX4 0x18 #define DisIDX 0x00 #define Rst_CNTR 0x02 #define EnIDX 0x01 #define Rst_FLAGS 0x04 //IOR Reg. #define NIDX 0x00 #define IOR(arg) (arg | 0xC0) #define Rst E 0x06 #define PIDX 0x02 #define Trf_PR_CNTR 0x08 #define XIOR(arg) (arg | 0x40) #define LIDX 0x00 #define Trf_CNTR_OL 0x10 #define YIOR(arg) XIOR(arg) #define RIDX 0x04 #define Trf_PS0_PSC 0x18 #define DisAB 0x00 #define EnAB 0x01 void Init_7266(int Addr); Initialize 7266 as follows Modulo N count mode for N = 0x123456**Binary Counting** Index on LCNTR/LOL Input CY and BW outputs **RCNTR/ABG** controls Counters A and B Enabled */ void Init_7266(int Addr) { /Setup IOR Reg. outp(XCMD(Addr),IOR(DisAB + LOL + ABGate + CYBW)); //Disable Counters and Set CY BW Mode //Setup RLD Reg. outp(XCMD(Addr),RLD(Rst_BP + Rst_FLAGS)); //Reset Byte Pointer(BP) And Flags outp(XDATA(Addr),0x06); //Load 6 to PR0 to setup Transfer to PS0 outp(XCMD(Addr),RLD(Rst E + Trf PS0 PSC)); //Reset E Flag and Transfer PR0 to PSC outp(XCMD(Addr),RLD(Rst_BP + Rst_CNTR)); //Reset BP and Reset Counter //Setup IDR Reg. outp(XCMD(Addr),IDR(EnIDX + NIDX + LIDX)); //Enable Negative Index on LCNTR/LOL Input //Setup CMR Reg. outp(XCMD(Addr),CMR(BINCnt + ModN + QDX4)); //Set Binary Mondulo N Quadrature X4

//Setup PR Reg. for Modulo N Counter to 0x123456 outp(XDATA(Addr),0x56); //Least significant Byte first outp(XDATA(Addr),0x34); //then middle byte outp(XDATA(Addr),0x12); //then most significant byte //Enable Counters outp(XCMD(Addr),IOR(EnAB)); } /* Write 7266 PR Input: Addr has Address of 7266 counter. Data: has 24 bit data to be written to PR register */ void Write_7266_PR(int Addr, unsigned long Data); void Write_7266_PR(int Addr, unsigned long Data) outp(XCMD(Addr),RLD(Rst_BP)); //Reset Byte Pointer to Synchronize Byte Writing outp(XDATA(Addr),(unsigned char)Data); Data >>= 8: outp (XDATA(Addr),(unsigned char)Data); Data >>= 8;outp(XDATA(Addr),(unsigned char)Data); } /* Read_7266_OL Input: Addr has Address of 7266 counter. Output: Data returns 24 bit OL register value. */ unsigned long Read_7266_OL(int Addr); unsigned long Read 7266 OL(int Addr) unsigned long Data=0; { outp(XCMD(Addr),(RLD(Rst_BP + Trf_Cntr_OL)); //Reset Byte Pointer to Synchronize Byte reading and Transferring of data from counters to OL. Data |=(unsigned long)inp(XDATA(Addr)); //read byte 0 from OL lrotr(Data,8); //Rotate for next Byte //read byte 1 from OL Data |=(unsigned long)inp(XDATA(Addr)); lrotr(Data,8); //Rotate for next Byte Data |=(unsigned long)inp(XDATA(Addr)); //read byte 2 from OL lrotr(Data,16); //Rotate for last Byte return(Data); /* Get_7266_Flags Input: Addr has Address of 7266 counter. returns Flags of counter */ unsigned char Get_7266_Flags(int Addr); unsigned char Get_7266_Flags(int Addr) ł return(inp(XCMD(Addr))); }